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SEQUENCE DISTRIBUTIONS OF NONHOMOGENEOUS 
COPOLYMERS* 

JAMES F. ROSS 

Norchem Inc. 
Morns, Illinois 60450 

ABSTRACT 

Sequence distributions of nonhomogeneous copolymer systems can be 
correlated by equations which recognize that catalyst sites are statisti- 
cally independent of each other. Dyad, triad, and tetrad distributions 
each provide a single characteristic parameter in the correlation equa- 
tions. Even partial resolution of NMR peaks serves to estimate these 
parameters. In the case of two-component homopolymer or copoly- 
mer blends, these parameters can identify the composition and amount 
of blend components from triad distributions. 

INTRODUCTION 

Earlier papers in this series developed a logical basis and appropriate equa- 
tions to explain deviations from low-order Markovian statistics in nonhomo- 
geneous copolymer systems [ 1,2] . Such systems contain many individual 
statistically independent catalyst sites. Because of this independence, condi- 
tional probabilities that may apply at each site individually cannot be ap- 
plied to  the polymerization as a whole. Approximate equations were derived 
that contain only a single parameter, X 2 ,  t o  reflect the effects of nonhomo- 
geneity on copolymer sequence distribution data. Excellent agreement with 

*Third in a series on statistics of nonhomogeneous systems [ 1, 21 
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212 ROSS 

experimental triad distribution data was obtained for several olefin copoly- 
mers made with Ziegler-Natta catalysts. 

Exact equations derived here give even better agreement with data, albeit by 
introducing one additional parameter X 3 .  

Exact equations for frequency distributions of nonhomogeneous copoly- 
mers are derived on the assumptions that: 1) low-order Markovian statistics 
are valid at each catalyst site individually at any given time, 2) the appropriate 
order of these statistics is determined unambiguously from coexistent mono- 
mer phase and copolymer compositions, and 3) the sites are statistically inde- 
pendent of each other. 

Now, further work shows that the previous approximations are unnecessary. 

DYAD DISTRIBUTIONS 

To illustrate the derivation of nonhomogeneity equations, consider a co- 
polymer of Components 1 and 2. For the dyad (1 l), the first assumption 
states that at the ith site. 

where P(1 l)i is the probability of forming the dyad (1 1) when the instantane- 
ous probability of Monomer 1 is mi [3]. Equation (1) is exact only for Ber- 
noullian mechanisms but can be modified for first-order Markovian mechanisms 

The second assumption implies that coexistent monomer-copolymer compo- 
P I .  
sition data yield valid reactivity ratios because reactivity ratios are linear func- 
tions of composition [ 1 , 2 ]  . 

The third assumption means that 

where the subscript o refers to the polymerization as a whole, considered over 
n independent microdomains. 

Letting mi = (m, t S i )  and defining 

xi = ( l /n)C6i] ,  (3 1 

and noting that XI = 0, Eq. (2) becomes 
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Similarly, 

and 

p(12), = 2m,(l - m,) - 2 X z .  (5c) 

Equations (Sa), (Sb), and (5c) do not yield three independent estimates of 
X z  because the sum of probabilities must be unity. It is easy to demonstrate 
that a simple average of the three estimates given by Eqs. (Sa), (5b), and (Sc) 
is equivalent to Eq. (512) alone. 

TRIAD DISTRIBUTIONS 

The distribution of the six triads may be obtained in a similar manner. To 
illustrate with the triad (1 1 I), 

P ( I I I ) ,  = ( 1 / n ) ~ ( m i ) ~  = (1 /n>7(mO + 6 i l 3  = m O 3  = m o z  [!l/n)FsiZI 

i- ( i i n )  F 6 i  ( 6 4  

or 

Similarly: 
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~ ( 2 2 1 ) ~  = 2m0(1 - mo)' + (3m, - 21x2 + 2x3, 

P(222), = (1 - m0)3 + 3(1 - mo)Xz - X3. 

(69 

(6g) 

In a prior paper, similar but approximate equations were obtained by setting 
X3 = 0. This approximation is unnecessary, however, because X z  is obtained 
exactly from dyad distributions. Triad data are employed to  estimate X 3 .  

TETRAD DISTRIBUTIONS 

By a similar procedure, tetrad distributions are obtained: 

P(1111), = I/nXrni4 = l /n2(mo +Si)4 = m o 4  +6m02Xz +4moX3 +X4. 

( 7 4  
Similarly: 

P(1112), =P(1121), =2m03(1 -mo)+6m,(l -2m0)X2 

+ 2(1 - 4m0)X3 - 2X4, (7b) 

P(2221)0 =P(2212), = 2m0(l - m0)3 - 6(1 - 2m0)(l - mo)Xz 

t 2(3 - 4m0)X3 - 2X4, (7e) 

P(2222), = (1 - m0)4 + 6( 1 - mo)' Xz - 4( 1 - rno)X3 t X, . (7 f) 

Complete resolution of the tetrad peaks on an NMR trace is not necessary 
since X4 can be obtained from any combination of Eqs. (7). An estimate can 
be obtained from as little as one accurately determined NMR tetrad peak and 
then used to predict the entire tetrad sequence. 

The validity of this approach depends not only on the accuracy of the data, 
but also on the kinetic mechanism, For systems that follow Bernoullian statis- 
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NONHOMOGENEOUS COPOLYMER SYSTEMS 215 

tics on a microscale, these equations are exact. But as shown in earlier papers, 
these equations are only approximations for systems following first-order 
Markovian statistics (as seen by the catalyst). For such systems, this approach 
is suspect. 

Each additional level of sequences (dyads to triads to tetrads, etc.) requires 
no new assumptions and generates only one additional characteristic param- 
eter. Thus, if pentad sequence data were available, even one peak on an NMR 
trace, the entire pentad distribution could be estimated from the value of X5 
so determined. Even without such data, the entire pentad distribution could 
be approximated by letting X5 = 0 in the appropriate probability equations. 
Pragmatically, this would not be a bad approximation because differences in 
X5 would probably be much smaller than errors in NMR measurements. 

This simplicity is quite unlike traditional Markovian statistics where, at 
any level of insight, additional assumptions have to be made so that the num- 
ber of relationships equals the number of unknowns. There is little doubt 
where Occam’s razor would cut in any comparison of the two approaches. 

Experimental Verification 

Kakugo et al. published NMR sequence distributions for ethylene-propyl- 
ene copolymers produced by Ziegler-Natta catalysis 141. They showed that 
their sequence distributions could not be fitted by low-order Markovian 
kinetics. However, Ross [ l ]  has shown that their listed coexistent mono- 
mer and polymer compositions demonstrate that the ( r 1 r 2 )  product is unity 
and, therefore, microscale, but not macroscale, kinetics are Bernoullian. 
Taking Kakugo’s Copolymer C as an example, we determine from Eqs. (5) 
and (6) that X 2  = 0.0254 and X 3  = -0.0141, from which we calculate the 
triad distributions listed in Table 1. 

TABLE 1 

Triad (PPP) (PPE) (EPE) (PEP) (EEP) (EEE) 

Observed 0.67 0.17 0.02 0.07 0.03 0.04 

Calculated 0.683 0.155 0.017 0.078 0.035 0.028 

Bernoullian 0.636 0.207 0.017 0.104 0.034 0.003 
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TABLE 2 

Triad (mmm) (mmr) (rmr) (mrm) (rim) (rrr) 
~~ ~ ~~ 

Observed 0.70 0.09 0.03 0.04 0.06 0.07 

Calculated 0.696 0.093 0.032 0.046 0.062 0 071 

Equivalent treatment of the sequences for Kakugo’s Polymers D-H pro- 
duces similar agreement. Nonhomogeneity per se is, therefore, an adequate 
model for Kakugo’s data. It also resolves the discrepancy between the ( r l r z )  
products obtained form coexistent monomer-copolymer compositions and 
those obtained from dyad distributions [l] . 

As a second example, Bovey [ 5 ]  reports tacticity distribution data based 
on NMR analysis of his Polymer 11. By use of a nonhomogeneous model, with 
X ,  = 0.0701 and X 3  = - 0.0277, an excellent fit of the data is obtained (Table 
2). The incompletely resolved tetrad data of Table 3 are also presented. 

Peaks 1,2,  and 3 do not yield information on X4 because this term cancels 
in summing the appropriate Eqs. (7). However, Peak 4 with Eq. (70 yields 
X4 = 0.0354, and Peak 5 with Eqs. (7c) and (7e) yields X4 = 0.0278. The aver- 
age estimate of X4 (0.03 16), when substituted back into Eqs. (7), predicts the 
following tetrad distribution: 

(mmmm) = 0.676 
(mmmr) = 0.041 
(mmrm) = 0.04 1 
(mmrr) = 0.052 
(mrrm) = 0.026 

(rmmr) = 0.026 
(mrmr) = 0.052 
(wmr) = 0.010 
(rrrm) = 0.010 
(rrw) = 0.066. 

TABLE 3 

NMR peak Observed value Components 

0.75 

0.07 

0.07 

0.07 

~~ ~ 

(mmmm) t (mmmr) t (rmmr) 

(rmrr) + (mmrr) 

(rmrm) t (mmrm) 

(rrrr) 

5 0.04 (mrrr) t (mrmz) 
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NONHOMOGENEOUS COPOLYMER SYSTEMS 217 

From these we calculate Peak 1 = 0.74, Peak 2 = 0.06, Peak 3 = 0.09, Peak 4 
= 0.07, and Peak 5 = 0.04, in good agreement with Bovey's observed values. 

A nonhomogeneous Bernoullian mechanism is therefore an alternative ex- 
planation of these data. As shown earlier [ l ,2]  , this ambiguity can be re- 
solved by calculation of rl  and r2 from coexistent monomer-copolymer 
compositions. 

POLYMER BLENDS 

Numerical values of X , ,  X 3 ,  and X4 can be calculated a priori for two- 
component copolymer blends or used to determine the amount and compo- 
sition of each component. 

Let a blend of two copolymers consist of only two components, ('p) parts 
having average composition (m, + 6 1) and (1 - p )  parts with composition 
(m, - 6,). 

From the definition of X ,  given by Eq. (3): 

x* = p ( 6 I t 6 , ) - 6 ,  =o,  (9) 

where p = 6,/(6 t 6,) from Eq. (9). 

m,. Equations (10)-(12) reduce to 
For blends of homopolymers or block copolymers, 6 = 1 - m, and 62 = 

X ,  = m,(l - mo), 

X 3  = m,(l - mo)(l - 2m0), 

X ,  = mo(I - mo)(l - 3m0 t 3rnO2), 
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In an earlier paper [ I ] ,  data for real systems over a range of polymer com- 
positions were correlated by equations of the form 

These equations were presented as empirical correlations that fit the data. 
It was noted that further examination might reveal a theoretical basis for this 
form of relationship. 

Comparison of Eqs. (13) and (15 )  shows that K 2  represents an objective 
measure of nonhomogeneity, being zero for a homogeneous system and unity 
for maximum possible nonhomogeneity, a block copolymer or blend of homo- 
polymers. This statement assumes that the factors that give rise to nonhomo- 
geneities with the same catalyst, under the same process conditions, are not 
affected by monomer composition. 

Experimental Verification 

To verify these equations, let us first conduct a thought experiment in which 
different ratios of homopolymers are physically blended to obtain a set of 
products with different mo values. The parameters X2 and X 3  will be calcu- 
lated from the blend ratios, then used in Eqs. (13) and (14), and finally used 
in Eqs. (6) t o  calculate the expected triads. The hypothetical data in Table 4 
are obtained. Thus the equations developed here are valid even for blends of 
homopolymers. 

As a second example, an impact-grade polypropylene was manufactured 
by blending homopolypropylene with an ethylene-propylene copolymer. When 
analyzed by C NMR, this material gave the triad distribution shown in Table 

TABLE 4 

mo x 2  x3 (111) (112) (212) (121) (221) (222) 

0.1 0.09 0.072 0.1 0 0 0 0 0.9 

0.3 0.21 0.084 0.3 0 0 0 0 0.7 

0.5 0.25 0 0.5 0 0 0 0 0.5 

0.7 0.21 -0.084 0.7 0 0 0 0 0.3 

0.9 0.09 -0.072 0.9 0 0 0 0 0.1 
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NONHOMOGENEOUS COPOLYMER SYSTEMS 219 

TABLE 5 

Triad (F'PP) (PPE) (EPE) (PEP) (EEP) (EEE) 

By analysis 0.812 0.028 0.015 0.013 0.033 0.099 

Calculation 0.813 0.026 0.016 0.013 0.033 0.100 

5, which is compared to values calculated from Eqs. (5) and (6) for X ,  = 
0.0947 and X ,  = - 0.0552. From Eqs. (14) and (15), we calculate 6 = 0.133 
and ti2 = 0.7 15. These data are consistent with a binary blend of 84% compo- 
nent containing 99 mol% propylene and 16% component containing 14 mol% 
propylene. Within the precision of the analysis, this interpretation of the triad 
data replicates the polymer as manufactured. 

CONCLUSIONS 

(1) Whenever there is nonhomogeneity, copolymer systems that follow low- 
order Markovian statistics at the catalyst site will not follow Markovian statis- 
tics in bulk. 

(2) Correlation of comonomer distributions for these systems are obtained 
which recognize the statistical independence of each microdomain. 

(3) Equations that correlate nonhomogeneous triad distributions yield vari- 
ance and skewness parameters that adequately fit the data. 

(4) The distribution of nonhomogeneous comonomer tetrads can be esti- 
mated from as little as one well-defined NMR peak. 

(5) Nonhomogeneous statistics apply as well to copolymer (and even homo- 
polymer) blends. 
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